Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 54(2): 1115-1125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118055

RESUMO

There are many problems that result from the use of a large number of chemical pesticides to control plant diseases, including pathogenic bacteria resistance, environmental contamination, and human health effects. Recently, endophytic fungi have become a significant source of bioactive fungicide products and an invaluable resource for excavating microbial pesticides. In this study, endophytic fungi with biocontrol potential were isolated and screened from Mikania micrantha leaves, stems, and roots. Fifty endophytic fungi were isolated and their antagonistic activity was studied in vitro using the confrontation culture method. The J2-3 strains from stems exhibit broad-spectrum and high activity. The strain's biological characteristics were determined by various culture conditions, and it was identified as Fusarium proliferatum by both morphological and ITS sequence analysis. Biological characteristics of the J2-3 strain were also tested. The optimum temperature for mycelium growth and sporulation was 25 °C and 30 °C, respectively. For mycelium growth, starch was the optimum carbon source, and peptone was the optimum nitrogen source for sucrose, mycelium growth, and sporulation. Mycelium growth was killed by a temperature of 60 °C, and sporulation was killed by a temperature of 55 °C. The light aided mycelium growth, and the light alternated between light and dark cycles for sporulation. Further, pot experiments were conducted to determine the antagonistic and viable effects of highly antagonistic strains on cucumber. The spore suspension's final control efficacy on cucumber wilt disease was up to 62.79% and it also promoted cucumber growth significantly. The results show that the entophytic fungus J2-3 from M. micrantha can protect cucumbers from wilt disease and promote growth.


Assuntos
Cucumis sativus , Fusarium , Praguicidas , Humanos , Cucumis sativus/microbiologia , Fungos , Praguicidas/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Front Plant Sci ; 13: 1090689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589102

RESUMO

Nowadays, due to the excessive dependence on chemical fertilizers and pesticides in agricultural production, many problems, such as soil hardening and soil-borne diseases, have become increasingly prominent, which seriously restrict the sustainable development of agriculture. The application of microbial fertilizer prepared by biocontrol microorganisms can not only improve soil structure and increase fertility but also have the function of controlling diseases. Streptomyces aureoverticillatus HN6 has obvious disease prevention and growth promotive effect, which can improve the rhizosphere fertility of plants and even regulate the rhizosphere microbial community of plants. Based on the comparison of frame composting and natural composting, we used the response surface method to optimize the preparation conditions of Streptomyces HN6 bacterial fertilizer. The results showed that natural composting not only produced higher composting temperatures and maintained long high temperature periods in accordance with local conditions, but was also more suitable for composting in the field according to local conditions. Therefore, the substrate's conductivity changed more, the ash accumulation increased, and the substrate decomposed more thoroughly. Thus, this composting method is highly recommended. Additionally, Streptomyces HN6 microbial fertilizer EC20 can reduce cowpea fusarium wilt and promote cowpea growth. The number of plant leaves, plant height and fresh weight, increased significantly in the microbial fertilizer EC20. Moreover, Streptomyces HN6 fertilizer EC20 could significantly induce soil invertase, urease and catalase activities. Our study highlights the potential use of Streptomyces HN6 as a biofertilizer to improve plant productivity and biological control of plant pathogenic fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...